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AB INITIO MODELING OF ELECTRON SUBSYSTEM OF MULTIATOMIC
CRYSTALS: SOFTWARE PACKAGE
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Abstract. A software package developed by the author is based on concepts of microscopic

solid state theory and provides ab initio calculation of some fundamental aspects of multiatomic

crystals. Results for BaTiO3, PbMoO4, and GeTe are in good agreement with available pub-

lished experimental data.
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1. Introduction

This work deals with an application of modern methods and concepts of microscopic solid
state theory as based on ab initio uniform approach to numerical modelling of electron subsystem
of crystalline solids and performing total energy calculations.

A software package was created to facilitate research related to band calculations, total energy
per unit cell, crystal binding energy analysis. This package called “SCPPBAND” for Self-
Consistent Pseudopotential Band calculation, enables the study of the influence of electron
energy spectrum details on lattice stability, and thereby predicts condition for crystal phase
transition.

In an earlier works [1,7] the author developed ab initio numerical model for the description
of the phonon subsystem of crystals as well as its application for the calculation of anisotropic
resistivity of hexagonal closed packed metals under pressure.

2. Technique and formulas

The algorithm used in the package is based on the solution of the Schrodinger equation for
the band problem

HΨn
k(r) = En(k)Ψn

k(r), (1)

where n is the band number, k is the Brillouin zone (BZ) vector. In the pseudopotential method,
the wave function Ψn

k(r) in (1) is expanded in plane waves (PW) that leads to the equation for
defining the band structure

∑

GG
′
(HGG′ (k)−E(k)δGG′ )a

n
G(k) = 0. (2)

In this case the Hamiltonian can be defined by superposition of screened ionic pseudopotentials
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H=T+Vps(r),Vps(r) =
N∑

l=1

NTP∑

α=1

Nα∑

i=1

V α(r−Ri). (3)

The common expression for screened pseudopotential form-factor has the form

VGG
′ (k) =

NTP∑

α=1

Sα(G
′ −G)Fα(k,G,G

′
), (4)

Fα(k,G,G
′
) = Ω−1

∫∫∫
exp [−i(k+G)x] Vα(x)exp

[
i(k+G

′
)x

]
dx, (5)

Sα(G-G′) =
Nα∑

i =1

exp
[
i(G-G′)Ri

]
. (6)

The set (2-6) defines a secular equation in the pseudopotential method for no symmetrical
plane wave (PW) basis.

In order to take into the account of the crystal symmetry it would be convenient to represent
the wave function as the symmetrized combination of plane waves (SPW)

Ψn
k(r) =

∑

i

an
i (k) · SPWi. (7)

Such decomposition reflects symmetry properties of the crystal under consideration by using
projection operator technique [13].

Here, the symmetrized basis is constructed in such a way that the computer memory re-
tains no more than one matrix element of multidimensional irreducible representation (IR). All
the rays of K-star are thereby considered as a prototype, whereas the fixed matrix element of
multidimensional IR is a projection operator.

Not all the original PWs contribute to SPW basis in symmetrising the secular equation which
significantly reduces the size of the secular matrix. It is crucial that in expression (5) the second
exp term can be replaced by SPW, whereas the first exp term may be left unchanged thereby
reducing the amount of computation [22].

Thus, Hamiltonian matrix elements can be written in the following form

Hi j =
∫

V

PWi(Ĥ) SPWjdr = An
i An

j

∫

V

PWi(QS
1) (Ĥ)





NS
i∑

l

Cj(l)PWj(Q
S
l )



 dr =

= An
iA

n
j

NS
j∑

l

Cj(l)
∫

V

PWi(Ĥ) PWj dr. (8)

The pseudopotential method basic quantity to provide self-consistency in density functional
approximation is the valence charge density

ρ (r) =
∑

k∈BZ

W (k)
NIR∑

α=1

∑
n

∣∣∣∣∣
∑

G

an
G(k) SPWG

∣∣∣∣∣
2

. (9)

Here, W( k) is the weight factor of the BZ point. Using the special points method, we can
integrate over BZ and calculate the values of ρ( r) on the grid points of the unit cell. The
function ρ( r) is used then to calculate the Fourier transform of ρ(G) via fast discrete orthogonal
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Fourier transformation. Further Fourier components of charge density are used to calculate the
screening potential in the reciprocal space

Vscr(G) = VH(G) + Vex(G), (10)

where VH is the Hartree electrostatic potential, Vex (G) is the exchange potential in Slater
approximation. The potential (10) is used for the additive screening of ionic pseudopotential
form-factor in the selfconsistency procedure. In this case, a partial mixing of the input potential
from a previous iteration is applied to accelerate convergence

V i+1
in = (1− β)V i

in + βV i
out. (11)

Here, the coefficient β is the mixing coefficient of successive iterations. The general scheme
of the procedure is presented in Figure 1.

Figure 1. The self-consistency procedure

In the local approximation for screened atomic form-factor in accordance with (5) we obtain

Fα(k,G,G′) = Fα(|G-G′|) =
1

Ωcell

∫
Vα(x) exp[(G-G′)x] dx. (12)

Here, Vα is the local pseudopotential for α-type atom in the unit cell, and we use the Ashcroft
ionic single-parametric pseudopotential [2, 3], which has the following form in the real space

W (r) =
{

0, r ≤ RC

−ZV
r , r > RC

. (13)
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The parameters ZV and RC are the ionic charge and core radius, respectively. We denote
the ionic pseudopotential by W(r) to emphasise the difference of this value vis-à-vis the atomic
pseudopotential Vα. In order to relate these values, we introduce the screening model of the
ionic pseudopotential in the crystal.

Two screening models: dielectric and additive are incorporated into the package.
The screened pseudopotential form-factor Vα for α type atom enters into band structure calcu-
lation via expression (5). In order to provide transferability of the from-factor of a given element
in calculations of other compounds, we have to start from the ionic form-factor and then screen
it in the environment of the concrete crystal.

The form-factor (12) in local approximation is defined as follows:

Fα(q) =
Wα(q)

1 + (1−f(q) · y0(q/2/kF )
, (14)

where kf is the Fermi impulse of screening electron gas, y0(x) – the Lindhard dielectric function:

y0(x) =
1

2πkF x2

[
1− x2

2x
Ln

∣∣∣∣
x + 1
x− 1

∣∣∣∣ + 1
]

, (15)

and f(q) is the correlation function in the Hubbard-Sham form:

f (q) =
q2

2
(
q2 + k2

F + k2
s

) , k2
s = 2kF /π. (16)

In contrast to the dielectric formalism, the additive screening of the ionic potential is ac-
complished on the basis of the iterative representation of self-consistency procedure itself. In
this case, the screened potential is related to the ionic potential at each step of self-consistency
procedure by

V (r) =
∑
α

W (r-Rα) + VH(r) + Vex(r), (17)

where VH (r) is the Hartree potential, Vex (r) is the exchange-correlation potential in the Slater’s
Xα approximation. Within the pseudopotential method, it is convenient to calculate the expres-
sion (17) in reciprocal space. In this case, the final expression for the screened pseudopotential
form-factor can be written in the form

F (q) =
∑
α

Sα(q)F 0
α(q)+VH(q)+Vex(q). (18)

The SCPPBAND software package is capable of performing the calculation of the crystal
total energy per unit cell. In the density functional approximation [6, 21], by using of reciprocal
space formalism [18], and expanding the Bloch wave functions in the PW basis and switching
to the Fourier representation, the total energy in the general case of multi-atomic crystals, can
be presented in the form:

Etot=
∑

k , nv

Env(k)−Ωcell

{
1
2

∑
G 6=0

VH(G)ρ (G) + 1
4

∑
G

Vxc(G) ρ (G)

}
+

+
∑
P

α1P · ZP + 1/2 · ∑
PP ′

MPP ′ZP ZP ′ .

(19)

The first term here stands for the contribution of the unit cell electrons. The summation is
carried over all valence band electron states. Calculation of this contribution is made by BZ
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integration using 3-dimensional spline interpolation over the whole BZ [20]. Env ( k) is the
electron dispersion law. The expression in brackets represents a correction for electron-electron
interaction in which VH (G) and Vex (G) are Fourier components of Hartree and exchange
correlation potentials. The value α1P in the penultimate term is the generalization of the
value α1 in [6] for the case of multi-atomic crystals, and presents the atomic pseudopotential
electronegativity of p-type related with the kinetic energy compensation in the core region,
which is the essence of the pseudopotential theory [19, 5]. This value depends on the sampling
of the concrete pseudopotential and compensates for the ambiguity of this choice. In the case
of Ashcroft pseudopotential (5), α1P can be presented in the following form:

α 1P =
1

Ωcell

∫ (
WP(r)−ZP

r

)
d3r=

4π ZP R2
C

Ω cell
. (20)

The last term in (19) represents the contribution of the Coulomb interaction of the ionic
subsystem to the crystal total energy. MPP’ are Madelung constants [23] defined by compound
formula, unit cell geometry, and charges of ions in the unit cell. In the SCPPBAND software
package the Madelung constants’ computation is performed in the general case of multi-atomic
crystal.

The current version the SCPPBAND software package consists of 6 basic programs written in
FORTRAN 90. Some auxiliary modules are worked out in ASSEMBLER and C. The structure
of the software package “SCPPBAND” is given in Figure 2.

Figure 2. The structure of the Software Package “SCPPBAND”

Notations in the above are as follow
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SC PBS -the SPW basis construction in accordance with
space group symmetry of the crystal;

SC PML
(SC PMN)

-the Hamiltonian matrix elements calculation
within the frame of local (nonlocal) pseudopo-
tential method optionally using Lowden pertur-
bation theory to reduce the matrix order;

SC PDL -the solution of Sturm - Liouville problem for
hermitian complex matrix;

SC PCD -the calculation of the electron charge density
distribution function in the lattice unit cell and
the screening potential construction;

SC CDC -the graphical presentation of the electron
charge density distribution function, as well as
the contour diagrams mapping;

SC PET -the calculation of the total energy per unit cell.

For the given crystal structure the module “SC PBS” runs only once. “SC PML”, “SC PDL”,
“SC PCD” run in every step of self-consistency process until convergence is reached. As for the
module “SC PET” it can be called at each iteration to assure self-consistency dynamics, and
then one final time after the convergence is obtained.

3. Specific applications

The SCPPBAND software package in the current version was applied to perform the cal-
culation of self-consistent pseudopotential band structure and the total energy of multi-atomic
crystals. There are no restrictions on symmetry and on the geometrical structure of the crys-
tal. The election energy spectrum calculations were carried out for the curtain BZ symmetry
directions, as well as in the general position point. The software package was specifically ap-
plied to perform self-consistent band calculations for the BaTiO3 - perovskite, a representative
of wide-gap dielectrics, having space group symmetry Oh1 (Pm3m). The results are in good
agreement with the data obtained by the alternative methods LCAO, APW and SW-α except
for the deep-filled bands. The latter, however, is explicable within the pseudopotential approach
and can be corrected by adding strongly localized states into the PW basis [15, 8].

The SCPPBAND software package was applied for the calculation of the PbMoO4 crystal
that had never before been the object of successive microscopic calculation. The crystal has
sheelite-type complicated multi-atomic structure which allows the testing of the effectiveness of
the suggested software package, namely, in the case of resource-intensive computations. The
calculations enable for the first time the obtaining of the self-consistent band structure of this
crystal and to the confirmation quantitatively of the conclusion of the determinative contribution
of metal oxygen cluster to the formation of optical spectra for this class of crystals [4, 9].

We have applied the suggested software package to ferroelectric-semiconductor GeTe. This
yields the first ever calculation of dependence of the total energy on the value of the unit cell
static deformation according to various phonon modes, including the soft modes. The depen-
dencies obtained have been used to construct the adiabatic potential and derive the microscopic
numerical model of ferroelectric phrase transition in GeTe within the vibronic theory. Vibronic
structural instability was suggested in [10-12] to be the only source of ferroelectric phase tran-
sition in this crystal. Now this conjecture has been confirmed numerically.



B. GASIMOV: AB INITIO MODELING OF ELECTRON SUBSYSTEM... 93

The specific applications described above on one hand demonstrate the capabilities of the
SCPPBAND software package on other hand investigate compounds which are perspective for
creating new materials with preset properties [14, 16, 17].
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